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Abstract - Concepts of quadratic expectation of random variable was introduced in a study with 
formulating its definition and deriving some elementary properties of itself. It has been thought that 
quadratic expectation might carry some more properties which are still unknown to us. One of its possible 
unknown properties has been identified and derived in this study which has been presented here.   
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1. INTRODUCTION 
Expectation, a statistical concept associated to random variable, is the theoretical average [1 , 12] of the 
possible values assumed by the variable [3, 5 , 13 , 14 , 17 , 18 , 27]. It is defined as the weighted average of its 
all possible values with their respective probabilities as the corresponding weights [3 , 13 , 14 , 17 ,18 , 23]. 
Originally, expectation had been defined as the weighted arithmetic mean [2  , 4 , 20] of its all possible 
values with their respective probabilities as the corresponding weights and was termed as mathematical 
expectation [3 , 13 , 14 , 17 ,18 , 23] which was termed as arithmetic expectation in later studies [6 , 11]. In some 
other studies, three more concepts of expectation had been introduced and defined using the concepts of 
geometric mean [2 , 4], harmonic mean [2 , 4 , 21] and quadratic mean [15 , 16 , 20] which were termed as 
geometric expectation [6 , 7 , 11], harmonic expectation [6 , 8 , 9 , 11] and quadratic expectation [10 , 11] 
respectively.  

Each of the four concepts/definitions of expectation carries its own properties which may be known or 
unknown to us. Some properties of arithmetic expectation had already been derived and are available in 
the literature of statistics [3 , 13 , 14 , 17 ,19 , 23]. Similarly, some properties of each of were geometric 
expectation, harmonic expectation and quadratic expectation were also been derived in some studies [7 , 
8 , 9, 10].  It has been thought that quadratic expectation might carry some more properties which are still 
unknown to us. One of its possible unknown properties has been identified and derived in this study which 
has been presented here.    

  

2. QUADRATIC EXPECTATION 
Let us consider a random variable denoted by X.  
If the random variable X is discrete and assumes real values  

x1 , 𝑥2 , ………. , 𝑥𝑁 

with respective probabilities 

p1 , 𝑝2 , ………. ,  𝑝𝑁 

 then the quadratic expectation of  X, denoted by EQ(X), is defined by  

https://en.wikipedia.org/wiki/Arithmetic_mean
https://en.wikipedia.org/wiki/Arithmetic_mean
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where absolute value of square root is taken [10]. 

If X is a continuous and assumes real values in the interval  

(a , b)  or  [a , b)  or (a , b]  or  [a , b] 

where a , b may be finite or infinite,   

having probability density function  f(x), 

then quadratic expectation of X denoted by EQ(X) can be defined by 

EQ(X) = 
dxxfx

b

a
)(.

2

  

where absolute value of square root is taken [11]. 

Some Notable Points: 

Note (1):  

Quadratic expectation describes the theoretical absolute magnitude of a random variable. 

Note (2):   

Arithmetic expectation of the random variable, denoted by EA(X), is defined by  

AE (X) = ∑   𝑁
𝑖 = 1  𝑝𝑖𝑥𝑖    , 

if X is discrete [6] 

and   

EA(X) = 
dxxfx

b

a
)(.   , 

if X is continuous [10]  

which implies,       

AE (X2) = { QE (X) }2    or.    QE (X) = 
)( 2XEA   

This means, quadratic expectation of a random variable X can also be defined as the absolute square root 
of arithmetic expectation of its square (i.e. of X2 ).    

Note (3):   

One consequence of Note (2) is that   

{ QE ( X  )}2 = { AE (X )    or    QE ( X  ) =
)(XEA  
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3. QUADRATIC EXPECTATION OF QUADRATIC MEAN 
Let us abbreviate arithmetic mean, quadratic mean, arithmetic expectation & quadratic expectation by 
AM, QM, AE & QE respectively.  

To obtain the relation between quadratic expectation of quadratic mean of a number of random variables 
let us first prove the following theorem namely Theorem (1):   

Theorem (1):   

If  

𝑋1 , 𝑋2 ,  ……….. , 𝑋𝑘 

are k real valued random variables then  

{ QE (√𝑋1 + 𝑋2 + … … … . + 𝑋𝑘  )}2 = { QE (√𝑋1 )}2 + { QE (√𝑋2 )}2 + …… 

….. + { QE (√𝑋𝑘  )}2 

Proof:   

From Note (3), it is obtained that  

 { QE (√𝑋1)}2 = AE (𝑋1)    i.e.    QE (√𝑋1) = 
)( 1XEA  ,  

{ QE (√𝑋2)}2 = EA (𝑋2)     i.e.     QE (√𝑋2)= 
)( 2XEA  ,   

….……………………………………………………..  ,   

{ QE (√𝑋𝑘)}2 = EA (𝑋𝑘)     i.e.    QE (√𝑋𝑘) = 
)(
kA XE

 ,  

{ QE (√𝑋1 + 𝑋2 + … … … . + 𝑋𝑘  )}2 = )( .........21 kA XXXE +++   

i.e.   QE (√𝑋1 + 𝑋2 + … … … . + 𝑋𝑘  ) = 
)( .........21 kA XXXE +++

                   

By additive property of arithmetic expectation [3 , 10 − 12 , 22 , 23],   

AE (𝑋1 + 𝑋2 + ……….. + 𝑋𝑘) = AE (𝑋1) + AE (𝑋2) + ……….. + AE ( 𝑋𝑘)  

Therefore, 

 { QE (√𝑋1 + 𝑋2 + … … … . + 𝑋𝑘   )}2 = { QE (√𝑋1 )}2 + { QE (√𝑋2 )}2 + …… 

                                                          ….. + { QE (√𝑋𝑘 )}2                           
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This can be regarded as additive property of quadratic expectation.  

The relation between quadratic expectation of quadratic mean of a number of random variables can be 
stated as in the following theorem namely Theorem (2): 
 

Theorem (2):  

QE of QM of a number of random variables is the QM of the QEs of the squares of the variables i.e. if  

𝑋1 , 𝑋2 ,  ……….. , 𝑋𝑘 

are k random variables then  

QE {QM(𝑋1 , 𝑋2 ,  ………. , 𝑋𝑘)} = QM{ QE (𝑋1)  , QE (𝑋2) , ……… , QE (𝑋𝑘)}  

Proof: From Property (1), it is obtained that 
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This means, 

QE {QM (𝑋1 , 𝑋2 ,  ………. , 𝑋𝑘)} = QM{ QE (𝑋1)  , QE (𝑋2) , ……… , QE (𝑋𝑘)} 

 

4. CONCLUSION 
Additive property of arithmetic expectation namely   

AE (𝑋1 + 𝑋2 + ……….. + 𝑋𝑘) = AE (𝑋1) + AE (𝑋2) + ……….. + AE ( 𝑋𝑘) 

implies that    

)}({ ...........
1

21 kA
XXXE

k
+++

= 
}{{ )(...........)()(

1
21 kQAA XEXEXE

k
+++

 

This means,  

AE {AM (𝑋1 , 𝑋2 ,  ………. , 𝑋𝑘)} = AM{ AE (𝑋1)  , AE (𝑋2) , ……… , AE (𝑋𝑘)} 
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i.e. the AE of AM of a number of random variables is the AM of the individual AEs of the variables. 

The property of QE derived here is similar to this property of AE.  

In this connection, it is to be mentioned that it is still not known whether geometric expectation and 
harmonic expectation carry some properties like that of arithmetic expectation and quadratic expectation. 
This is a problem of research at this stage. 
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