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Abstract - An additive property of harmonic expectation was derived in the case of discrete random
variable from the classical definition of harmonic expectation. Here, the same has been derived from the
additive property of arithmetic expectation. This derivation of the additive property of harmonic
expectation, along with numerical example, has been presented in this article.
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1. INTRODUCTION

In statistics expectation is a theoretical concept associated with a variable random in nature and its
measure or equivalently its definition [1,3,7, 15,17 - 20, 23] is based on the measure/definition of the
concept of average [2, 8]. Three definitions of expectation, developed based on the three classical means
due to Pythagoras [6, 8,10, 13] namely arithmetic mean [4, 5, 24], geometric mean [4, 5, 21] & harmonic
mean [4, 5, 16], are respectively arithmetic expectation, geometric expectation & harmonic expectation

[9].

Arithmetic expectation, which had been developed first and whose several properties were identified, is
also termed as mathematical expectation or simply expectation in standard literature of statistics [1,13 -
15,18, 19, 23]. Several similar properties of geometric expectation & harmonic expectation are yet to be
identified. In the meantime, one property of geometric expectation has been identified which is its
multiplicative property [11]. In another study, one property of harmonic expectation has been identified
which is its additive property [12]. The additive property derived was derived in the case of discrete random
variable from the classical definition of harmonic expectation. Here, the same has been derived from the
additive property of arithmetic expectation. This derivation of the additive property of harmonic
expectation, along with numerical example, has been presented in this article.

2. ARITHMETIC AND HARMONIC EXPECTATIONS
Definition
If X is a positive random variable assuming the values

b ST o AT o Y8

with respective probabilities

P1,D2 ) e veevevny Py
ie. P(X =x)=p;,
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then EA(X), the arithmetic expectation of X, is defined by

EA(X) =X, pix;
while the harmonic expectation of X, denoted by EH(X), is defined by

EH(X) = 721 e
Definitions of EH(X) & EA(X) imply that
1
EH (X) = 1
which implies,
1
g =E, ()

This means, the harmonic expectation of X is the reciprocal of the arithmetic expectation of the reciprocal
of X and vice versa.

3. HARMONIC EXPECTATION-ADDITIVE PROPERTY
Additive property of harmonic expectation can be stated as follows:

If

Derivation

If X is a discrete random variable assuming non-zero values then the arithmetic expectation of X is the
reciprocal of the harmonic expectation of the reciprocal of X (i.e. of %) ie.
1
o mE ()
E (—
G

Similarly, if Y is another discrete random variable assuming non-zero values the arithmetic expectation of
Y is the reciprocal of the harmonic expectation of the reciprocal of Y (i.e. of % ) ie.

1

1
e ()

=E (Y)
A
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Accordingly, the arithmetic expectation of (X +Y) is the reciprocal of the harmonic expectation of the
reciprocal of (X +Y) (i.e. of ﬁ) ie.

1
1

E (———

H (X +Y
But by the additive property of arithmetic expectation, the arithmetic expectation of (X +Y) is the sum of
the individual arithmetic expectations of X & Y i.e.

E (X+Y)=

A )

E (X+Y)=E (X)+E (Y)
A A A

All these together imply that

11 1
1 = +

- 1
HX+Y

1
By Gy) Bl Ey()

Now, suppose that
). ORI, ST , X

are k discrete random variables such each of them assume non-zero values then by the same logic as in
the case of the variable X,

1 1 1
EA(xl)zil, E (xz)— e E (xk)z 1
E, &) E.G) E. ()
H H H
Xl X2 Xk
But by the generalized additive property of arithmetic expectation, the arithmetic expectation of the sum
of X;, X5, cen , X, is the sum of their individual arithmetic expectations i.e.

Therefore,

4. NUMERICAL EXAMPLE
Let us consider the random experiment of single throwing of an unbiased dice and define 3 random
variables by

X =eveninteger , Y = odd integer & Z = integer whose square root is an integer
Here X assume the 3 values

2,4,6
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with
P(x =2)=1/3,P(X =4)=1/3, P(X =6) =1/3.
Y assume the 3 values
1,3,5
with
P(y =1)=1/3,P(y =3)=1/3, P(X =5) =1/3.
Z assume the 2 values
1,4
with
PZ=1)=%,P(z=4)=%.
The variable the variable X + Y assumes the values
3,5,7,9,1
with
P(X+Y =3)=1/9, P(X+Y=5)=2/9, P(X+Y =7)=3/9,
P(X+Y =9)=2/9, P(X+Y=1)=1/9.
The variable the variable Y + Z assumes the values
2,4,5,6,7,9
with
P(vy+z =2)=1/6 ,P(Yy+z=4)=1/6, P(vy+Z =5) =1/6,
Piv+z =6)=1/6,P(vy+z=7)=1/6,P(y+2=7)=1/6 .
The variable the variable X + Z assumes the values.
3,5,6,7,8,10
with
P(x+z =3)=1/6,P(x+z=5)=1/6, P(Xx+Z =6) =1/6,
P(x+z =7)=1/6,P(x+z=8)=1/6, P(X+2=10)=1/6 .
The variable the variable X + Y + Z assumes the values.
4,6,7,8,9,10,1,12,13,15
with
P(X+Y+Z =4)=110,P(X+Y+Z =6)=1/10, P(X+Y+Z =7)=1/10,
P(X+Y+Z=8)=110,P(X+Y+Z =9)=1/10, P(X+Y+Z =10)=1/10,
P(X+Y+Z =1)=1/10, P(X+Y+Z =12)=1/10, P(X+Y+Z =13)=1/10 ,
P(X+Y+z =15) =1/10.
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From computations, it is found that

1
e (o025 =40
L ) =0 By )
1
1 1 =30
E (=) =0.3333333333333 E (5)
HY H'y
1
E Cy-o04 1, =
(2 =0 , En )
1
1 —— 1 -0
(———) = 0.14285714285714285714285714285714 E ( )
H X+Y HX+Y
1
1 — 1 79
E (, -)=0.18181818181818181818181818181818 g (_~_)
H Y+Z HY+z
1
1 ———— =65
(———) = 0.15384615384615384615384615384615 E ( )
H X+Z H X+Z
1
1 1 =95
E (y oy 5)=0.10526315789473684210526315789474  E ( )
H X+Y+Z H X+Y+Z
Note that
1 1 1
Tt ; =40+30=70=— "1 —
E (=) E (= E (—
H(X) H(Y) H(X+Y) |
1 1 1
t { =30+25=55= ",
E (Z) E (= E (———
H(Y) H(Z) H(Y+Z) |
1 1 1
T+ { =40+25=65=—— —
E (=) E (= E (——
H(X) H(Z) H(X+Z) |
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1 1 1 1
7+ + =40+30+25=95=

1 1
e ) Ep() B

1

E -
H (X+Y+Z) _

5. CONCLUSION

The additive property of harmonic expectation was derived from its classical in earlier study [12]. In this
study, it has been derived from the additive property of arithmetic expectation. The aim of this study was
to verify whether the two tracks of derivation yield the same result and in the study it has been found so.
Thus, we can be more confident on the validity of the result on this property of harmonic expectation.

In this connection, it is to be mentioned that each of arithmetic mean, geometric mean & harmonic mean
can be defined in terms of another one among the three means. Consequently, it is possible to define each
arithmetic expectation, geometric expectation & harmonic expectation in terms of another one among the
three expectations. This leads to thinking of whether it is possible to derive a property of each of them from
some property of another one among them.
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