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Abstract - The great mathematician Pythagoras who is the inventor of the three basic measures of
average namely Arithmetic Mean, Geometric Mean & Harmonic Mean, which are termed as the
Pythagorean classical means, derived an inequality satisfied by these three measures in a domain of
numbers. An inequality has here been derived which is satisfied by the three Pythagorean classical means
in a wider domain of numbers. This article presents the derivation of this extended inequality with numerical
example.
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1. INTRODUCTION

The concept of average [1, 3, 17] was introduced as a means of describing a characteristic of a class of
individuals overall. Average is calculated by its measure from a list/set of numbers (or equivalently data in
statistical literature).

The great mathematician Pythagoras [2, 3, 11] had invented the three basic measures of average namely
Arithmetic Mean (AM), Geometric Mean (GM) & Harmonic Mean (HM) [3,6,7,8,10,12,14, 15, 18] These
were later termed as Pythagorean classical means [10]. Each of these three measures of average was
derived on the basis of some philosophy [4, 7].

In statistics, these the three Pythagorean means are used as the basis of measures of central tendency of
data [9,16,19, 20].

Moreover, these three are used and/or can be used as the tool of constructing measures of various
characteristics of data [3].

Pythagoras derived an inequality satisfied by the three Pythagorean classical means in a domain of
numbers [4,8,13].

However, numerical data are not always limited to this domain of numbers within which the inequality
derived by Pythagoras is valid. Thus, there is necessity of searching for an inequality to be satisfied by these
three classical means in a wider domain of numbers and/or to extend/modify the inequality derived by
Pythagoras for in a wider domain of numbers. The great mathematician Pythagoras who is the inventor of
the three basic measures of average namely Arithmetic Mean, Geometric Mean & Harmonic Mean, which
are termed as the classical Pythagorean means derived an inequality satisfied by these three measures in
a domain of numbers. An inequality has here been derived which is satisfied by the three Pythagorean
means in a wider domain of numbers. This inequality can be interpreted as an extension of the inequality
established by Pythagoras. This article presents the derivation of this extended inequality with numerical
example. An inequality has here been derived which is satisfied by the three Pythagorean classical means
in a wider domain of numbers. This inequality can be interpreted as an extension of the inequality
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established by Pythagoras. This article presents the derivation of this extended inequality with numerical

example. |

2. PYTHAGOREAN CLASSICAL MEANS

The three Pythagorean classical means are Arithmetic Mean (AM), Geometric Mean (GM) & Harmonic

Let

be a list/set of n real numbers..

Arithmetic Mean of the list of numbers is a number A such that

Geometric Mean of the list of numbers is a number G such that

X1 X werneen Xy = GG G

G = (x;.%p. o . X N/n
provided x;, Xy, e , X, are all positive.

Harmonic Mean of the list of numbers is a number H such that

1 1 1 1 1 1
—+— + ... +t— ==+ — + ... + —
X X xn H H H
1
H=
N +—0)
n'xy X2 xn

provided x;,x; , weween. , X, are all non-zero.
Now, let us use the notations

AM (1, Xy ;) oo ,xn),GM (21, %y ) o ,xn) & HM (1, Xy ) oo ,xn)

X1 1 X2 g e , Xn
Note (2.1)

Min (xl,xz, ......... ,xn) < AM (xl,xz, ......... ,xn) < Max (xl,xz, ......... ,xn),
Min (x1 A P ,xn) <GM (x1 1 X ) eeeeeeene xn) < Max (x1 R ,xn)

(21

(2.2)

(2.3)

(2.4)

(2.5) ie.

(2.6)
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2.1. Pythagorean Inequality
Pythagorean established that

when x;, x5, e , X, are positive, real and not all identical.
In particular, when x; , x5 , ce.. , X, are all identical then

AM (xl,xz, ......... ,xn)=GM (xl,xz, ......... ,xn)=HM (xl,xz, ......... ,xn)

3. EXTENSION OF PYTHAGOREAN INEQUALITY
Suppose,

are all positive and are not all identical.

Then

Now,
AM( X1 )= Xg ) coereeene —xn) = {(—xl) (—xz) o + (—xn)}
=——{x1+x2+ ........... +xn}

ie. AM (— X1, = Xg ) s , —xn) =-AM (x1 i p— ,xn) (3.1)
Similarly,
HM (= X1 ) = X ) oo s —Xy) = !

( T xn) %{( 1xl) (->1<2 Y e (—tcn)}

— 1
%(xil+xi2 o +xin)

ie. HM (- X1, = Xg ) e , —xn) = —-HM (x1 S — ,xn) (3.2)

is to lie lies within

the smallest of —x; , — x5, . , —x, &and the largest of —x; , — Xy e, — Xy
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Hence,
GM(—xl,—xz, ......... ,—xn)
is negative.
By definition of geometric mean,
GM (- X1 = Xg e , —xn) = {(- xl).(— xz). ......... ( —xn) h/n
= {(=1).(=1). e (=) B0 { (1) -(02) - e () 1
= {1 nh/n {x 2 . x, /0
ie. GM (= x;, — x5 ) o , —%,) =—GM (x;.x5. o Xy ) (3.3)
Now,
AM (xl,xz, ......... ,xn) > GM (xl,xz, ......... ,xn)
= —AM(xl,xz, ......... ,xn) < —GM(xl,xz, ......... ,xn)
= AM(—xl,—xz, ......... ,—xn) < GM(—xl,—xz, ......... ,—xn)

Similarly,

when x;,x,, c. , x, are dll negative real numbers and are not all identical.

Thus, the relationship satisfied by AM, GM & AH can be stated in the form of a theorem as follows:
Theorem (2.1):

Arithmetic Mean, Geometric Mean and Harmonic Mean satisfy the relation

AM (1, Xy ;) oo ,xn)>GM (21, Xg ) e ,xn)>HM (1, Xy ) oo ,xn)

when x;, x5, e , X, are positive, real and not all identical,

AM (xl,xz, ......... ,xn)<GM (xl,xz, ......... ,xn)<HM (xl,xz, ......... ,xn)

when x;,x,, c. , X, are negative, real and not all identical

4. NUMERICAL EXAMPLE
Let us take the numbers

1,2,3,45,6,7,8,9,10
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In this case
MM(1,2,..,9,10) =55,
GM(1,2,...,9,10) = 452872868811676476220330934
& HM (1,2, ... ,9,10) = 3.414171521474055006096 73486
ie. AM(1,2,...,9,100>cM(1,2,...,9,10)>HM (1,2, ... ,9,10)
Now, AM, GM & HM of
-1,-2,-3,-4,-5,-6,-7,-8,-9,-10

are as follows:

AM (-1,-2,....,-9,-10) =-55,
GM (-1,-2,....,-9,-10) = - 52872868811676476220330934
& HM (-1,-2, .....,— 9,-10) = —.41417152147405500609673486
ie. AM-1,-2,..,-9,-10) >GM (-1,-2,...,-9,-10) >HM (-1,-2, ...,- 9,-10)

5. CONCLUSION
Following conclusions can be drawn from the above findings:

(1) Geometric mean exists and is defined for a list/set of numbers which are either all positive or all negative.
(2) Arithmetic mean, geometric mean and harmonic mean satisfy the inequality given in Theorem (2.).

(3) The inequality, described by Theorem (2.1), can be interpreted as an extension of the inequality
established by Pythagoras in the domain real numbers which are either all positive or all negative.

(4) Till this date, geometric mean has been treated as suitable for measuring central tendency of numericall
data when all the numerical data are strictly positive. One significant findings of this study is that geometric
mean can be also be suitable for measuring central tendency of numerical data when all the data are
negative.
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